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Abstract In this paper we consider the enumeration problem of a particular three-
dimensional molecular or chemical compound system which has a polyhedral frame
where the vertices, edges and faces represent ‘units’ such as atoms, bonds, ligands,
polymers, or other objects of chemical interests. In this system, chirality is also taken
into account. This enumeration problem is mathematically modeled as the ‘total col-
oring’ enumeration problem of a polyhedron: i.e., the number of ways to color all
the vertices, edges and faces of the polyhedron by using three or more corresponding
color sets, in which some colors may be chiral. We establish a general formula for this
enumeration problem by extending the fundamental version of Pólya’s enumeration
theorem. In particular, we apply this technique to the enumeration problem of poly-
hedral links which have received special attention from biochemists, mathematical
chemists and mathematicians over the past two decades.

Keywords Total coloring · Polyhedral link · Catenane · Enumeration

1 Introduction

Motivated by the chemical isomer problem, in the 1930s Pólya [1] developed a pow-
erful combinatorial theory for the enumeration of symmetry-mediated equivalence
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classes of ‘colorings’. This enumeration theory has now become standard fare in com-
binatorics texts and named after him, i.e., Pólya’s theorem or Redfield-Pólya theorem.
Beyond the formal mathematical theory, Pólya also applied his theory to a few chemical
problems and, in particular, the classic problem of alkane isomer enumeration which
was recently reviewed by Fujita in his survey paper [2]. Following Pólya there have
been further refinements for this chemical problem in a large number of papers. Some
earlier results can be found, for example in [3–10] and the references cited therein. In
particular, the pre-1986 work on this problem was nicely reviewed by Read [11] who
also gave a translation (made by D. Aeppli) of the Pólya’s foundational paper [1].

Pólya’s enumeration theory has now developed to be a universal tool in dealing
with the enumeration problems of various systems, in addition to alkane isomers
and its original version. In 1992, Fujita [12] considered in detail many theoretical
extensions (primarily concerning chirality and symmetry questions, not only for iso-
mers, but also for reaction processes). In his series of articles [13–17], Fujita also
considered the alkanes as stereoisomers and therefore, developed the unit-subduced-
cycle-index (USCI) approach by means of an algebraic derivation as well as by means
of a diagrammatical formulation. Yeh considered the asymmetric dendrimers [18],
the acyclic chemical compounds generated by asymmetric building blocks. The ear-
lier works beyond the acyclic compounds are discussed in [9] and after this, a lot
of works were also established for various cyclic molecular systems, e.g., the ben-
zenoid hydrocarbons and geometrical non-planar benzenoid hydrocarbons [19–22],
conjugated polyene hydrocarbons [23], fluorantenoids and fluorenoids (catacondensed
systems) [24], hererofullerenes [25], polyphenacenes [26,27]. In [28], Bytautas and
Klein extended this standard combinatorial enumerative techniques to compute aver-
age values of certain graph-theoretic invariants.

In this paper we consider the enumeration problem of a particular three-dimensional
molecular or chemical compound system which has a polyhedral frame where the ver-
tices, edges, and faces correspond to ‘units’ such as atoms, bonds, ligands, polymers,
or other objects of chemical interests, in which chirality is taken into account. This
enumeration problem is mathematically modeled as the ‘total coloring’ enumeration
problem of a polyhedron. Here, for the notion ‘total coloring’ we mean to color all
the vertices, edges and faces of the polyhedron by using three or more corresponding
color sets. For chemical interests, a color may represent an atom, a bond, a ligand, a
polymer, or other object and therefore, may be chiral or achiral. Thus, the number of
the ways to totally color a polyhedron, in terms of the standard Pólya’s theory, could
be represented as the number of equivalence classes of the total colorings under the
operation of the point group generated by the rotations which leave the polyhedron
invariant if chirality is included; or the reflection group generated by the rotations and
the mirror reflections which leave the polyhedron invariant if chirality is neglected.

In the second section, we establish a general formula for the ‘total coloring’ enumer-
ation problem by extending the fundamental version of Pólya’s enumeration theorem.
This enumeration model is expected to have various applications in counting three
dimensional chemical compounds or other three dimensional objects. In particular,
we apply this technique to the enumeration problem of polyhedral links which have
received special attention from biochemists, mathematical chemists and mathemati-
cians over the past two decades [29–35].
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In the third section, by applying the enumeration model obtained in the second sec-
tion, we give explicit expressions for the number of certain types of polyhedral links
belonging to the family of ‘3-cross-curve and double-twist-line covering’ polyhedral
links. This concept was proposed by Qiu [32] inspired by the recent advances on the
study of catenanes, e.g., [29–31,35].

2 Total colorings of the polyhedrons

For a polyhedron P , we denote by V, E and F its vertex set, edge set and face set,
respectively. For convenience, a vertex or edge or face of P will be generally called an
element, if no confusion can occur. Correspondingly, V or E or F is generally called
an element set and denoted by W . A total coloring of P with the vertex color set Cv ,
edge color set Ce and face color set C f is a mapping from V, E and F to Cv,Ce and
C f , i.e., an assignment of each vertex, each edge and each face of P with a color in
Cv,Ce and C f , respectively. We note that a color may be chiral or achiral.

It is well known that a rotation or a mirror reflection π which leaves P invariant
induces a permutation on an element set W : i.e., π |W : W → W is a bijection. So
in the following, we do not distinguish between a rotation or a mirror reflection and
its induced permutation. From symmetric group theory, all rotations which leave P
invariant form a group. We denote this group by GP here after. Moreover, GP ×{I, φ}
also forms a permutation group acting on each element set W [36], where I is the unity
permutation and φ is an arbitrary mirror reflection that leaves P invariant. We note
that, for any g ∈ GP , φg is also a mirror reflection of P [12,36]. This means that a
chiral color will be transferred to be its antipode [12,36] (i.e., its mirror image) under
the operation of φg for any g ∈ GP while an achiral color does not change.

For a total coloring C and an element u, we denote by C(u) the color of u assigned
by C . Two total colorings C1 and C2 are said to be equivalent under the operation of
GP (resp., GP × {I, φ}) if there is a permutation π ∈ GP (resp., π ∈ GP × {I, φ})
such that C1(u) = C2(π(u)) for all elements u. A total coloring of P is called chiral
if it is not equivalent to its mirror image and called achiral otherwise.

Therefore, the total coloring enumeration of P , in terms of the standard Pólya’s
theory, is equivalent to determining the number of equivalent coloring classes of P
with the color sets Cv,Ce and C f under the operation of GP if chirality is included; or
under the operation of GP ×{I, φ} if chirality is neglected. We denote this number by
n(P,Cv,Ce,C f ) if chirality is included or n∗(P,Cv,Ce,C f ) if chirality is neglected.

Before continuing our discussion, let’s recall some elementary concepts of the clas-
sic Pólya’s and Burnside’s enumeration theory. For a permutation g of a permutation
group G on an m-elements set S, it is well known that g can be split into disjoint
cycles in a unique way. If g splits into b1 disjoint cycles of length 1, b2 disjoint cycles
of length 2, . . . , bm disjoint cycles of length m (m = b1 + 2b2 + · · · + mbm), then we
form the product xb1

1 xb2
2 · · · xbm

m . The cycle index of G is therefore defined by

PG(x1, x2, . . . , xm) = 1

|G|
∑

g∈G

xb1
1 xb2

2 · · · xbm
m . (1)
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Consider the number of equivalent coloring classes of S using p colors under the
operation of the group G. Burnside’s lemma tells us this number is

n(S, G) = 1

|G|
∑

g∈G

Ψ (g)

or, in terms of Pólya’s theorem,

n(S, G) = PG(p, p, . . . , p),

where Ψ (g) is the number of the colorings left fixed by g [37].
We now return to the numbers n(P,Cv,Ce,C f ) and n∗(P,Cv,Ce,C f ). By (1),

we may write the cycle index of GP as the form

PGP (x11, . . . , x1|V |; x21, . . . , x2|E |; x31, . . . , x3|F |)

= 1

|GP |
∑

g∈GP

∏

i=1,2,3

∏

j=1,2,...,σi

x
bi j
i j

where b1 j , b2 j and b3 j ( j ∈ {1, 2, . . .}) are the number of cycles of length j in g
restricted to V, E and F , respectively, and σ1 = |V |, σ2 = |E |, σ3 = |F |.

For g ∈ GP , let εv(g) (resp., εe(g) or ε f (g)) be the number of the cycles in g
restricted to V (resp., E or F). Then the number of the colorings left fixed by g is

exactly equal to Ψ (g) = ∏
i=1,2,3

∏
j=1,2,...,σi

x
bi j
i j by setting x1 j = |Cv|, x2 j =

|Ce|, x3 j = |C f |, j = 1, 2, . . ., i.e.,

Ψ (g) = |Cv|εv(g)|Ce|εe(g)|C f |ε f (g).

Thus, the following result is immediate.

Theorem 1 If chirality is included, i.e., each pair of the chiral total colorings is sep-
arately counted, then the number of equivalent total coloring classes of P with vertex
color set Cv , edge color set Ce and face color set C f is given by

n(P;Cv,Ce,C f ) = 1

|GP |
∑

g∈GP

|Cv|εv(g)|Ce|εe(g)|C f |ε f (g)

= PGP (|Cv|, . . . , |Cv|︸ ︷︷ ︸
|V |

; |Ce|, . . . , |Ce|︸ ︷︷ ︸
|E |

; |C f |, . . . , |C f |︸ ︷︷ ︸
|F |

). (2)

��
For a color set Ch(h ∈ {v, e, f }), we denote

C ∗
h = Ch \ {c : c is chiral and c ∈ Ch, c /∈ Ch},
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where c is the antipode, i.e., the mirror image of c. We call the colors in {c :
c is chiral and c ∈ Ch, c /∈ Ch} the isolate colors. For a permutation π ∈ φGP ,
let δv(π) (resp., δe(π) or δ f (π)) be the number of even cycles of π restricted to V
(resp., E or F) and let av be the number of achiral colors in C ∗

v (resp., C ∗
e or C ∗

f ). In
addition, εv(π) (resp., εe(π) or ε f (π)) is the number of the cycles in π restricted to
V (resp., E or F).

Theorem 2 If chirality is neglected, i.e., each pair of the chiral total colorings is
counted just once, then the number of equivalent total coloring classes of P with
vertex color set Cv , edge color set Ce and face color set C f is given by

n∗(P;Cv,Ce,C f ) = n(P;Cv,Ce,C f ) − 1

2
n

(
P;C ∗

v ,C ∗
e ,C ∗

f

)

+ 1

2|GP |
∑

π∈φGP

∏

h∈{v,e, f }
aεh(π)−δh(π)

h |C ∗
h |δh(π) (3)

(here we note that a0
h = 1 for any ah ≥ 0).

Proof We first claim that

n∗(P;Cv,Ce,C f )= n(P;Cv,Ce,C f )−n
(
P;C ∗

v ,C ∗
e ,C ∗

f

)
+n∗ (

P;C ∗
v ,C ∗

e ,C ∗
f

)
.

In fact, the total colorings C’s of P can be divided into two parts:
Part 1. C does not use any isolate color. The number of such total colorings is clearly

equal to n∗
(
P;C ∗

v ,C ∗
e ,C ∗

f

)
.

Part 2. C uses at least one isolate color. In this case, since the mirror image of an
isolate color cannot be used in any coloring, the mirror image of C is not a coloring of
P . Thus, the equivalent classes of such colorings are obtained depending only under
the operation of the permutation group GP and therefore, the number of equivalent

classes of such colorings is equal to n(P;Cv,Ce,C f ) − n
(
P;C ∗

v ,C ∗
e ,C ∗

f

)
. Our

claim follows.
From the above argument, we need only to prove that n∗

(
P;C ∗

v ,C ∗
e ,C ∗

f

)
equals

1

2
n

(
P;C ∗

v ,C ∗
e ,C ∗

f

)
+ 1

2|GP |
∑

π∈φGP

∏

h∈{v,e, f }
aεh(π)−δh(π)

h |C ∗
h |δh(π).

By Burnside’s lemma [37],

n∗ (
P;C ∗

v ,C ∗
e ,C ∗

f

)
= 1

2|GP |
∑

π∈GP×{I,φ}
Ψ (π)

= 1

2|GP |
∑

π∈GP

Ψ (π) + 1

2|GP |
∑

π∈φGP

Ψ (π).
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Let π ∈ GP × {I, φ}. Consider the number Ψ (π) of the total colorings left fixed
by π .
Case 1. π ∈ GP .

In this case the number of the colorings left fixed by π is exactly equal to Ψ (π) =
|C ∗

v |εv(π)|C ∗
e |εe(π)|C ∗

f |ε f (π) and therefore,

1

2|GP |
∑

π∈GP

Ψ (π) = 1

2
n

(
P;C ∗

v ,C ∗
e ,C ∗

f

)

by the same argument as that for Theorem 1.
Case 2. π ∈ φGP .

Let C a
v denote the set of the av achiral colors in C ∗

v . Let C be a total coloring left
fixed by π and let v1 ∈ V . Then there is a cycle of π , say v1v2 · · · vl , which contains
v1 and moreover, v1, v2, . . . , vl ∈ V .

First assume that l is odd. If C(v1) is chiral then C(v1) = C(v2) = C(v3) =
C(v4) = · · · = C(vl) = C(v1), which is a contradiction since C(v1) �= C(v1), where
C(vi ) represents the mirror image of C(vi ). This implies that C(v1) is achiral and
therefore, C(v1) = C(v2) = · · · = C(vl) ∈ C a

v . In other words, there are exactly
|C a

v | = av colors that can be chosen for the cycle v1v2 · · · vl .
Now assume that l is even. In this case, each color in C ∗

v can be used for the cycle
v1v2 · · · vl , i.e., there are |C ∗

v | colors that can be chosen for v1v2 · · · vl .
From the above discussion we can conclude that:

1. If δv(π) = εv(π), then all the cycles of π restricted to V have even length and,
therefore, any color in C ∗

v can be used. Thus the number of the colorings left fixed
by π for V is |C ∗

v |εv(π). On the other hand, we notice that δv(π) = εv(π) also
implies that aεv(π)−δv(π)

v |C ∗
v |δv(π) = |C ∗

v |εv(π) since aεv(π)−δv(π)
v = a0

v = 1 for
any av ≥ 0, as desired.

2. If δv(π) < εv(π), then π has an odd cycle in V . So if av = 0 then no color
can be used for this odd cycle. This implies that no coloring is left fixed by π ,
i.e., Ψ (π) = 0. On the other hand, av = 0 and εv(π) − δv(π) �= 0 imply that
aεv(π)−δv(π)
v |C ∗

v |δv(π) = 0, again as desired. Now if av > 0, then it is obvious that
the number of the colorings left fixed by π for V is aεv(π)−δv(π)

v |C ∗
v |δv(π).

The discussion for the edge set and face set are analogous, which completes our proof.
��

Note 1. From Theorem 2, if π has an odd cycle in V (resp., E or F) and C ∗
v (resp., C ∗

e
or C ∗

f ) contains no achiral color, i.e., av = 0 (resp., ae = 0 or a f = 0), then there is
no coloring left fixed by π . This can greatly simplify the calculation for the last term
in (3).

3 Application to polyhedral links

A polyhedral link is mathematically modeled as a topological link based on a poly-
hedral skeleton in a certain ‘linking-locking’ pattern. In this section, we focus on
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(a) (b) (c)

Fig. 1 a The tetrahedron. b Un-twisting pattern and two twisting patterns on an edge (top); two locking
patterns at a vertex (bottom). c A 3-cross double-twist tetrahedral link, in which the number on each edge
represents the number of twistings

the ‘3-cross-curve and double-twist-line covering’ [32] pattern, which is based on a
3-vertex-regular polyhedron P (i.e., each vertex has degree 3):

1. at each vertex of P , the three corresponding single rings are interlocked, as illus-
trated in Fig. 1b;

2. each edge of P corresponds to parts of two single rings that may be twisted or
not, as illustrated in Fig. 1b. Only full twists (full means 360◦) are allowed. For
convenience, in the following we call the section of a single ring situated on an
edge a ‘single string’;

3. the boundary of each face of P is associated to a single ring.

We call such polyhedral links the 3-cross double-twist polyhedral links. See Fig. 1c
for an example, where the number on each edge represents the number of twistings
(here, a ‘twisting’ means twisting the double line 360◦).

From the geometric point of view, at each vertex the three corresponding rings can
be locked in two patterns, i.e., the right-hand locking pattern and the left-hand locking
pattern, see Fig. 1b. Moreover, these two patterns are chiral and are the antipodes of
each other. Similarly, the two corresponding rings on an edge can be twisted in two
chiral patterns, i.e., the clockwise pattern and anti-clockwise pattern, both of which
are antipodes of each other, see Fig. 1b.

A polyhedral link can be formed in various ways to meet some specific require-
ments or synthesis strategies, e.g., formed by using the single strings which are given
in advance, or formed by using the single rings which are given in advance. Different
requirements may lead to different vertex (resp., edge or face) color sets and therefore,
lead to different enumeration results by Theorem 1 and Theorem 2. In the following,
we give two models of the 3-cross double-twist polyhedral links, for concrete example.

Model 1 Rings which are independent from each other are given; that is, any two
(resp., three) rings are allowed to meet at an edge (resp., at a vertex) without any
constraints. Furthermore, all the sections of a ring are treated as the same.
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1 2 31 2* *

Fig. 2 The tetrahedron links without twisting and with only one type of single ring

We may set the vertex color set as Cv = C ∗
v = {−1, 1} in which −1 and 1 are chiral

pairs, i.e., mirror images of each other, representing the right-hand locking pattern and
left-hand locking pattern. Let s be the maximum limit of the twisting number at an
edge. Since the two single strings on an edge are determined by the two rings they
belong to, the color of an edge only represents the twisting pattern and the twisting
number of the two corresponding single strings. Thus, we set the edge color set as
Ce = C ∗

e = {−s,−s + 1, . . . ,−1, 0, 1, 2, . . . , s} in which i (0 < i ≤ s) and −i are
chiral pairs representing the clockwise pattern and anti-clockwise pattern with twisting
number i , respectively, while 0 is achiral representing the un-twisting pattern. Finally,
we set the face color set as C f = C ∗

f = {1, 2, . . . , t} in which each color is achiral
representing a type of single ring and t is the maximal number of different types of
single rings.

Consequently, we have av = 0, |Cv| = |C ∗
v | = 2, ae = 1, |Ce| = |C ∗

e | = 2s + 1
and a f = |C f | = |C ∗

f | = t . In particular, if we set s = 0 and t = 1, then there are
exactly five tetrahedral links of this model, as depicted in Fig. 2, in which 1, 1∗ and
2, 2∗ are two chiral pairs. ��

Model 2 Strings are given instead of rings. The single ring in a face of the polyhe-
dron is then formed by connecting the corresponding single strings on its boundary.
The two strings on an edge are determined by each other. This type models, for an
example, a certain type of DNA polyhedral link [35] in which the two strings on an
edge represent two DNA single strands and therefore, are determined by each other
by the Watson-Crick principle of complementary base pairing.

In general, a DNA strand may have an orientation. To simplify our discussion, in
this model we neglect the orientations. Furthermore, since the two strings on an edge
are determined uniquely by each other, they are treated as one unit and therefore are
assigned with one color. We call such a pair of single strings a double string. Let s be
the maximum limit of the twisting number at each edge and let t be the number of dif-
ferent types of double strings (where type may refer, for example, to DNA sequence,
but not to twisting number). As an example of isolate colors, we here assume that all
types of un-twisted double strings are achiral while all types of twisted double strings
are chiral and that all twistings are clockwise, which implies that all colors used for
twisted edges are isolate.

From the above requirements, we may set the vertex color set as in Model 1, i.e.,
Cv = C ∗

v = {−1, 1}. The edge color set is set as

Ce = {〈i, j〉 : i ∈ {0, 1, . . . , s}, j ∈ {1, 2, . . . , t}}
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Fig. 3 The tetrahedron P4 (left), the cube P6 (middle) and the dodecahedron P12 (right)

and C ∗
e = {〈0, j〉 : j ∈ {1, 2, . . . , t}} in which 〈i, j〉 with i �= 0 is isolate and 〈0, j〉 is

achiral, where i and j represent the twisting number and the type of the double string,
respectively. Finally, since each face is determined by the corresponding double strings
on its boundary, the number of colors for faces is treated as 1. That is, the face color
set consists of one achiral color and is set as C f = C ∗

f = {1}.
As a result, we have av = 0, |Cv| = |C ∗

v | = 2, ae = |C ∗
e | = t, |Ce| = (s + 1)t and

a f = |C f | = |C ∗
f | = 1. ��

As an application of Theorems 2 and 3, in the following we deduce the explicit enu-
merating expressions of Model 1 for the 3-vertex-regular Platonic polyhedra (Plato’s
solids): i.e., each vertex has degree 3 and all the faces are equal regular polygons.
From geometric theory, there are only three such polyhedrons, i.e., the tetrahedron
P4, the cube P6 and the dodecahedral P12 [36], as shown in Fig. 3.

In Model 1, we have shown that av = 0, |Cv| = |C ∗
v | = 2, ae = 1, |Ce| = |C ∗

e | =
2s + 1 and a f = |C f | = |C ∗

f | = t . So by (2), (3) and Note 1, the number of different
polyhedral links based on a polyhedron P is given by

n(P) = PGP (2, . . . , 2︸ ︷︷ ︸
|V |

; 2s + 1, . . . , 2s + 1︸ ︷︷ ︸
|E |

; t, . . . , t︸ ︷︷ ︸
|F |

) (4)

if chirality is included, or

n∗(P) = 1

2
n(P) + 1

2|GP |
∑

π∈φGP ,δv=εv

2εv (2s + 1)δe tε f (5)

if chirality is neglected, where and here after, for h ∈ {v, e, f }, εh = εh(π) and
δh = δh(π) for simplicity.

Tetrahedron links. Let the vertices and edges and faces of P4 be numbered by 1,2,3,4
and 1,2,3,4,5,6 and 1,2,3,4, respectively, as illustrated in Fig. 4. Let φ be chosen as
the mirror reflection with respect to the plane P , as illustrated in Fig. 4. For π ∈
GP4 × {I, φ}, we write π as the form [πV ][πE ][πF ], where [πV ], [πE ] and [πF ] rep-
resent the permutations of π restricted to V, E and F , respectively. In this way, the
rotation group of the tetrahedron [36] is represented by
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P
1

2

3

4
4

2
3

54

6

1

v

e1

f f2

e

v

v

v

e

e e

e

f

f3

1

2

3

4
2

3

5 4

6

1

v

e1
ff2

e

v

v

e

ee

e

f

f3

4v

Fig. 4 The tetrahedron (left) and its mirror image (right) with respect to the plane P (middle): vi , ei and
fi (i = 1, 2, . . .) represent the vertex i , edge i and face i , respectively

GP4 = {I, [(234)][(123)(456)][(234)], [(243)][(132)(465)][(243)],
[(134)][(146)(253)][(134)], [(143)][(164)(235)][(143)],
[(124)][(163)(245)][(124)], [(142)][(136)(254)][(142)],
[(123)][(142)(365)][(123]), [(132)][(124)(356)][(132)],
[(12)(34)][(34)(26)][(12)(34)], [(13)(24)][(15)(34)][(13)(24)],
[(14)(23)][(15)(26)][(14)(23)]}

The cycle index of GP4 is therefore

PGP4
(x11, . . . , x1|V |; x21, . . . , x2|E |; x31, . . . , x3|F |)

= 1

12

(
x4

11x6
21x4

31 + 3x2
12x2

21x2
22x2

32 + 8x11x13x2
23x31x33

)
.

Thus, by setting x1 j = 2, x2 j = 2s + 1, x3 j = t, j = 1, 2, . . . , we have

n(P4) = 1

3

[
4(2s + 1)6t4 + 3(2s + 1)4t2 + 8(2s + 1)2t2

]
. (6)

On the other hand, there are 6 permutations in φGP4 satisfying δv = εv:

[(1324)][(15)(2463)][(1324)], [(1243)][(1652)(34)][(1243)],
[(1342)][(1256)(34)][(1342)], [(1423)][(15)(2364)][(1423)],
[(1234)][(1453)(26)][(1234)], [(1432)][(1354)(26)][(1432)].

Therefore,

∑

π∈φGP� ,δv=εv

2εv (2s + 1)δe tε f = 6 × 2 × (2s + 1)2 × t = 12(2s + 1)2t .
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Thus, by (5) and (6) we have

n∗(P4) = 1

6

[
4(2s + 1)6t4 + 3(2s + 1)4t2 + 8(2s + 1)2t2 + 3(2s + 1)2t

]
.

Cube links.

PGP6
(x11, . . . , x1|V |; x21, . . . , x2|E |; x31, . . . , x3|F |)

= 1

24

(
x8

11x12
21 x6

31 + 8x2
11x2

13x4
23x2

33 + 6x2
14x3

24x2
31x34 + 3x4

12x6
22x2

31x2
32

+6x4
12x2

21x5
22x3

32

)
.

In addition,

∑

π∈φGP6 ,δv=εv

2εv (2s + 1)δe tε f = 48(2s + 1)4t5 + 16(2s + 1)6t3 + 24(2s + 1)3t2

+32(2s + 1)2t.

Therefore,

n(P6) = 1

3

[
32(2s + 1)12t6 + 6(2s + 1)6t4 + 12(2s + 1)7t3 + 3(2s + 1)3t3

+16(2s + 1)4t2
]
.

n∗(P6) = 1

6

[
32(2s + 1)12t6 + 6(2s + 1)4t5 + 6(2s + 1)6t4 + 12(2s + 1)7t3

+2(2s + 1)6t3 + 3(2s + 1)3t3 + 16(2s + 1)4t2 + 3(2s + 1)3t2

+4(2s + 1)2t
]
.

Dodecahedral links.

PGP12
(x11, . . . , x1|V |; x21, . . . , x2|E |; x31, . . . , x3|F |)

= 1

60

(
x20

11 x30
21 x12

31 + 20x2
11x6

13x10
23 x4

33 + 24x4
15x6

25x2
31x2

35 + 15x10
12 x2

21x14
22 x6

32

)
.

In addition,

∑

π∈φGP12 ,δv=εv

2εv (2s + 1)δe tε f = 1024(2s + 1)15t6 + 320(2s + 1)5t2

+96(2s + 1)3t2.
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Therefore,

n(P12) = 1

15

[
262144(2s + 1)30t12 + 3840(2s + 1)16t6 + 1280(2s + 1)10t4

+96(2s + 1)6t4
]
.

n∗(P12) = 1

15

[
131072(2s + 1)30t12 + 1920(2s + 1)16t6 + 128(2s + 1)15t6+

640(2s + 1)10t4 + 48(2s + 1)6t4 + 40(2s + 1)5t2 + 12(2s + 1)3t2
]
.

Remark There is a degenerate form of the 3-cross-curve and double-twist-line cover-
ing, called the ‘three cross-curve and double-line covering’ [33] pattern in which no
twisting happens on edges, which can be dealt with simply by setting s = 0 in (4)
and (5). In [34], an analogous pattern, called the ‘3-branched curves and m-twisted
double-lines covering’ pattern, was also introduced in which the three single rings at
a vertex are not locked. This pattern can be dealt with by replacing the vertex color
set in Model 1 by Cv = C ∗

v = {0}, in which 0 is achiral.
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